SHA२K
SOLUTIONS

This appendix refers to the EPD MD-24013-EN, developed according to EN15804+A2:2019.
Results in the appendix communicates LCA results in the format described in EN15804+A1:2013, in order to accommodate a need in the transition period between the two standard revisions. The appendix cannot stand alone, as the reference EPD describes the basis of the assessment.

ENVIRONMENTAL IMPACTS PER KG												
Parameter	Unit	A1	A2	A3	A4	A5	B1-B7	C1	C2	C3	C4	D
GWP	[kg CO 2 -eq.]	1,15E-01	6,19E-03	3,14E-01	MND							
ODP	$\begin{aligned} & \text { [kg CFC11- } \\ & \text { eq.] } \end{aligned}$	5,10E-09	1,07E-18	6,04E-15	MND							
AP	[$\mathrm{kg} \mathrm{SO}_{2}$-eq.]	3,19E-04	1,40E-05	4,43E-04	MND							
EP	[$\mathrm{kg} \mathrm{PO}_{4}{ }^{3-}$-eq.]	2,48E-04	3,39E-06	1,11E-04	MND							
POCP	[kg etheneeq.]	8,73E-05	-5,06E-06	-5,30E-05	MND							
ADPE	[kg Sb-eq.]	8,35E-07	4,81E-10	6,54E-08	MND							
ADPF	[MJ]	2,09E+00	8,35E-02	4,66E+00	MND							
Caption	GWP = Global warming potential; ODP = Ozone depletion potential; AP = Acidification potential of soil and water; EP = Eutrophication potential; POCP = Photochemical ozone creation potential; ADPE = Abiotic depletion potential for non fossil resources; ADPF = Abiotic depletion potential for fossil resources											
	The numbers are declared in scientific notation, fx $1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12^{*} 10^{-11}$ or 0,0000000000112 .											

RESOURCE USE PER KG												
Parameter	Unit	A1	A2	A3	A4	A5	B1-B7	C1	C2	C3	C4	D
PERE	[MJ]	1,31E+00	4,68E-03	1,07E+00	MND							
PERM	[MJ]	1,69E-01	0,00E+00	0,00E+00	MND							
PERT	[MJ]	1,48E+00	4,68E-03	1,07E+00	MND							
PENRE	[MJ]	2,19E+00	8,40E-02	6,31E+00	MND							
PENRM	[MJ]	0,00E+00	0,00E+00	0,00E+00	MND							
PENRT	[MJ]	2,34E+00	8,40E-02	6,31E+00	MND							
SM	[kg]	5,26E-01	0,00E+00	0,00E+00	MND							
RSF	[MJ]	$\begin{gathered} -1,46 \mathrm{E}- \\ 11 \\ \hline \end{gathered}$	0,00E+00	0,00E+00	MND							
NRSF	[MJ]	$\begin{gathered} \hline-2,14 \mathrm{E}- \\ 10 \\ \hline \end{gathered}$	0,00E+00	0,00E+00	MND							
FW	[m^{3}]	1,01E-03	5,36E-06	1,92E-03	MND							

> PERE $=$ Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT $=$ Total use of renewable primary energy

Caption materials; PENRM = Use of non renewable primary energy resources used as raw materials; PENRT = Total use of non renewable primary energy resources; $\mathrm{SM}=$ Use of secondary material; RSF = Use of renewable secondary fuels; NRSF =

Use of non renewable secondary fuels; FW = Use of net fresh water
The numbers are declared in scientific notation, fx $1,95 \mathrm{E}+02$. This number can also be written as: $1,95^{*} 10^{2}$ or 195 , while $1,12 \mathrm{E}-11$ is the same as $1,12^{*} 10^{-11}$ or 0,0000000000112 .

WASTE CATEGORIES AND OUTPUT FLOWS PER KG												
Parameter	Unit	A1	A2	A3	A4	A5	B1-B7	C1	C2	C3	C4	D
HWD	[kg]	1,64E-05	4,23E-12	1,25E-09	MND							
NHWD	[kg]	3,84E-03	1,25E-05	1,08E-01	MND							
RWD	[kg]	2,31E-05	1,02E-07	6,46E-04	MND							
CRU	[kg]	0,00E+00	0,00E+00	0,00E+00	MND							
MFR	[kg]	0,00E+00	0,00E+00	0,00E+00	MND							
MER	[kg]	0,00E+00	0,00E+00	0,00E+00	MND							
EEE	[MJ]	0,00E+00	0,00E+00	0,00E+00	MND							
EET	[MJ]	0,00E+00	0,00E+00	0,00E+00	MND							
Caption	HWD = Hazardous waste disposed; NHWD = Non hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy											

